
© 2024. This work is has been published under Creative Commons license CC BY-ND 4.0,
which permits unrestricted reproduction and distribution in any medium or format for any
purpose, even commercially, provided that no substantial changes were made, and provided
that the original work and author is properly attributed.
See this link for more licensing details: https://creativecommons.org/licenses/by-nd/4.0/

 Lessons to be learned from

 esoteric programming languages

T. W. of Finity

version 1.00, first published on 2024/02/26
on the ZedLX.com website in the section Articles / Programming language design blog

Abstract. Two popular esoteric programming languages, Ook! and BF were examined in an
attempt to find interesting language design properties that could be applied to the ZedLX
programming language. Several usable design properties were detected upon closer
examination of those two esoteric languages. The detected design properties are discussed in
detail in this article, including conclusions from a subjective perspective of the article's
author.

1. Introduction

The design of the ZedLX programming language was influenced by a wide variety of
programming languages, too many for them all to be explicitly mentioned in this article.
As the principal designer of the ZedLX language, I would like to emphasize one
unexpected language that has provided invaluable inspiration and insight for the design of
the ZedLX language. This essential predecessor of ZedLX is the language Ook!, a simple
esoteric programming language, itself inspired by another simple esoteric language, BF
[1].

The languages Ook! and BF are highly popular among programming language hobbyists
and enthusiasts, despite their high level of difficulty. [2][3] The Ook! language has itself
inspired many other programming languages [4], which indicates that it might be
regarded as a very inspiring language. Thus the questions arises: do those languages bear
some interesting properties hidden behind their uninviting appearance?

Lessons to be learned from esoteric programming languages 2

2. Being simple to explain

“Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.”

 - Antoine de Saint-Exupéry, Airman's Odyssey

Simplicity is an often overlooked aspect of a programming language. A common
evolution path of a popular programming language encourages it to swallow, one by one,
every imaginable and popular feature that can be easily integrated into the language [5].
This is a normal consequence of catering to the community of programmers who use the
language for a wide variety of purposes. After a few years of development on such a path,
the language increases in complexity to the point where it can not be made suitable for
programming beginners anymore.

In contrast to such trajectories, simplicity might be one of the key features that
contributes to constantly high popularity of languages like Ook! and BF. These languages
are so simple that they can be completely explained to beginners in less than a few hours,
while the same task pertaining to some general purpose programming language requires
much more time, even when restricted only to the basics of the language.

This important clue from languages Ook! and BF was taken into account when ZedLX
language was designed. The amount of effort required on learning basics ZedLX before
the language becomes interesting and somewhat usable was intentionally kept low; in this
aspect the designers of ZedLX attempted to make the language more similar to the Ook!
and BF languages.

3. Structure of computer programs

Ever since the Dijkstra's famous letter “Go To Statement Considered Harmful” [6], much
has been written about improving the structure of computer programs. Many new
approaches were put forward, of which two can be clearly distinguished: Python's
approach of mandatory indentation, and C-like approach of free-form syntax.

Even in the apparently homogeneous camp of free-form languages, there are significant
disagreements regarding the exact form that best indicates structure of programs. For
example, there are many conflicting indentation styles in C-alike languages, where each
organization, group or author prefers a different indentation style.[7] Ook! language also
belongs to this group, meaning that it allows any desired indentation style while
prescribing none in particular.

ZedLX expands on this widely accepted principle of free-form indentation by allowing an
additional syntax for some blocks of statements, called the “statement list” syntax [8].
The main purpose of the statement list syntax is twofold: first, to reduce the number of

Lessons to be learned from esoteric programming languages 3

braces and the number of accompanying indentation problems; second, to provide an
alternative to statement block syntax in a way that makes the structure of statement
blocks easier to understand.

4. Pronounceability of programming languages

One important advantage of the Ook! language, compared to the vast majority of
programming languages in common use, is the property of being pronounceable in an
obvious way. Pronounceability might be an important feature of a programming language
for beginners, as it is likely to lead to easier collaboration and reduced number of
misunderstandings [9].

The language Ook! appears to have been designed for easy pronunciation not only for
humans, but also for some of their closest relatives [10], which is a commendable
property [11]. However, the ZedLX language is designed for a much narrower set of
potential users, namely only for humans who would like to learn computer programming.
In this regard, it was deemed more important to make ZedLX similar to other popular
programming languages, then to make it easily pronounceable across species.

In an attempt to get closer to the high pronounceability of Ook!, the design of ZedLX
strives to reduce the number of unpronounceable characters, compared to other
mainstream programming languages. The characters that are commonly difficult to
pronounce are many of the non-alphabetic characters, widely used in most programming
languages.

In mainstream languages, some of the most problematic characters to non-ambiguously
pronounce are the characters “^”, “&” and “`”. Can the reader, immediately and off the
top of head, tell what is the correct, easily understandable, and non-ambiguous
pronunciation of those characters? Note that the word “and” is ambiguous, especially in a
programming language. The non-ambiguous version, now humorously known as
“ampersand”, has a humiliating origins, preventing utilization of this word in any serious
endeavor. For those reasons alone, we recommend the following non-ambiguous
pronunciation of the mentioned characters: “acme”, “grandma” and “tock”, in respective
order. Furthermore, the following non-ambiguous pronunciations of other characters are
recommend when reading aloud source code of ZedLX programs: “#” as “hash”, “!” as
“bang”, “.” as “dot”, “$” as “pharma”, “~” as “waver”, “@”as “ater”, “?” as “quer”, “'” as
uniquote, “"” as “biquote”, “\” as “fallbar”, “|” as “verbar”, “/” as “risebar”, “_” as
“underbar”, “%” as “pers”, “*” as “star”, “=” as “equor”, “<” as “lessor”, “>” as
“greator”.

Lessons to be learned from esoteric programming languages 4

5. Turing-completeness of ZedLX

The language Ook! is proven to be Turing-complete [12][13], while, at the time of writing
this article, ZedLX is not yet proven to be Turing-complete. An easy way to prove Turing-
completeness of ZedLX is to write an interpreter of the Ook! language in ZedLX.
Therefore, one important use of the Ook! language is that it makes it easier to prove
Turing-completeness of new programming languages, and this has direct implications for
the question of Turing-completeness of ZedLX.

Since the Ook! interpreter for the ZedLX is easy to imagine, the authors of ZedLX felt that
it was not a priority to explicitly write an Ook! interpreter in the ZedLX language. Instead,
it is sufficient to simply discuss how to map features of the Ook! language into the
features of ZedLX. For example, the Ook! language allows a statement “Ook? Ook?”.
While the exact substitute for this statement in the ZedLX language is still uncertain at the
time of writing this article, the preliminary analysis suggests that the equivalent might be
the empty statement. Similarly, as ZedLX currently lacks the ability to output characters to
a standard output, some substitute for the statement “Ook! Ook.” has to be found in order
for Turing-completeness of the ZedLX language to be easily proven.

6. Grammar-indicated syntax

The syntax of mainstream programming languages leaves much to be desired when
compared to the clean, simple, and easy-to-understand syntax of programming languages
Ook! and BF. Almost all common programming languages suffer from the problem of
context-sensitive analysis, necessitating ad-hoc style parser hacks involving symbol
tables, often multiple.[14]

The syntax of languages Ook! and BF has been analyzed in detail by designers of ZedLX,
as an essential guidance for syntax simplification. As a consequence, the grammar of
ZedLX was designed to not be context-sensitive, and the ZedLX parser was implemented
without any symbol tables.

At the first glance, it might appear that this improvement is just an implementation detail;
however, such a conclusion is almost certainly false. The context-sensitive syntax of most
programming languages is probably making those languages more difficult to learn. The
syntax of ZedLX is in the simpler class of LL(*) languages [15], which should make the
language easier to learn, analyze and understand. Therefore, by adopting an important
syntactic lesson, primarily based on the BF language, the designers of ZedLX have also
improved its learnability.

Careless accumulation of syntactic elements might be a result of a language designer's
hidden desire to quickly occupy the greatest possible share in the competitive market of
programming languages. Afterwards, many excuses can be easily produced to purportedly

Lessons to be learned from esoteric programming languages 5

explain why the language has a convoluted syntax. Here I provide two examples of some
well-known instances of such behavior: “the lexer hack” [16] and “the most vexing
parse” [17] of the C++ language.

I hope that future programming languages designs will recognize the importance of clean
syntax, exemplified by the syntax of the BF language. The clean syntax is important to
facilitate easier language learning, language usage, and language analysis. All mainstream
programming languages are designed with an apparent primary goal of quick and easy
implementation of numerous features. I advocate for programming languages that are
primarily designed for the programmers who will be using them, instead of languages
primarily designed for a quick grab of the market-share.

7. Redundancy reduction attempts

While the Ook! language strives for multi-species usability, this approach has necessarily
led to many compromises when viewed from the human-only perspective. Other species
might find it unavoidable to use vocalizations that are barely differentiable by humans,
while on the other side the specific vocal apparatus of human beings prefers only an
anthropocentric class of vocalizations. When a compromise is made by including only
those sounds that are pronounceable and differentiable by multiple species, the end result
is unwanted redundancy when analyzed from a perspective of any single species [18].
This highlights common problems of languages designed for highly disparate use cases,
which includes designs of most of the general-purpose programming languages.

The humans themselves appear to be in a love-and-hate relationship with redundancies.
The most widely used programming languages have ample redundancies, even when
viewed from a human-only perspective. The humans are, apparently, willing to tolerate
the redundancies in a given programming language as long as they are not detrimental for
programming. If a redundancies can somehow be ameliorated, the humans will
enthusiastically adopt the solution, probably because removal of redundancies makes it
easier to perform modifications of source code. The examples of such behavior include
the acceptance of numerous “class wizards”, identifier renaming tools, and the acceptance
of type inference mechanisms in programming languages.

The ZedLX language expands on the commonly accepted mechanisms of redundancy
reduction in several ways. The most important new mechanism, directly inspired by the
problem of abundant redundancies of Ook! and by the syntactic elements of BF, is the
feature of unmarked initializers [19]. This feature relieves the programmer of unnecessary
type specifications when the appropriate type can be easily inferred. There are other
mechanisms that serve the same or similar purpose. In order to increase the brevity of this
article, I will challenge the readers to attempt to find them by themselves.

Lessons to be learned from esoteric programming languages 6

8. Valid critique is priceless

On an abstract basis, constructive critique has been recognized as an indispensable aspect
of science and research. It manifests itself most apparently in the form pre-publication or
post-publication peer reviews. While academic processes are apparently designed to
allow for constructive critique in theory, I question whether the ensuing effects might
often be the opposite in practice.

The essential problem with any critique is than no one likes to be critiqued, and especially
not if the person is an established academic or scientist held in high regard. It is not only
that people dislike critiques about their own work, but the same is true for groups of
people, whether working together in an organization, or being just a loosely connected
group sharing similar interests. Consequently, those groups, whether consciously or
unconsciously, make it difficult for any substantial critique about them to receive the
required attention. Such outcomes can easily be accomplished by various methods in the
existing systems, for example by double-standards in the “gray” areas, lack of blinding in
reviews, or by simply ignoring the criticisms, to name a few potential methods.

The first esoteric programming language, INTERCAL [20][21], is in many ways an
obvious critique of other contemporary programming languages, even though it never
provides critiques in explicit expressions. Instead, a person interested in INTERCAL is
simply allowed to arrive at own conclusions. Such a situation raises a question: like
INTERCAL, do other esoteric programming languages also harbor non-explicit critiques?

The languages BF and Ook! can be perceived as a critique of academic disciplines of
programming language research, computing and computer science; perhaps intentionally
dispatched through alternative channels to avoid unfair censorship. If we were to
understand those two languages as concealed critiques, then what are the messages they
are trying to covertly convey?

Both languages share a striking resemblance to several models of abstract machines
proposed by academia in the preceding decades [22]. Those abstract machines have
received a fantastically high level of attention in academic circles [23]; those machines
have been taught to generations of students [24], and they have been branded as a form of
serious and accepted research.

Why is then, by what criteria, the research on BF and Ook! not a “serious” and
“accepted” research? Who is the producer of the so-called criteria, who is the judge, and
in which way are they held accountable? Both the producer and the judge of criteria are
groups of researchers, invariably as biased as any other human beings are, and held
accountable to no one.

The exact same methods in their various forms, by which research on Ook! and BF has
been ignored, can also be employed to silence a vast range of valid critiques directed at

Lessons to be learned from esoteric programming languages 7

the core of the academic system [25]. The academic system itself is sustained by the
group of people who are its supporters; this group is just as biased as any other group of
people is, and it doesn't like to hear serious critique when it is directed against its core
principles. The languages Ook! and BF might be suggesting that the academic system has
failed to provide a viable mechanism by which critiques can be directed against it. In this
way, the academic system has become blind to certain kinds of critiques and repeatedly
fails to hear suggestions about serious reforms.

In the unconventional words of the Ook! language I read a manifest and clairvoyant
message, much clearer than any academese [26] that I have ever stumbled upon. The
message reads as follows: the academic system is obsolete, biased and broken beyond
repair; it has been superseded by the Internet and the variety of other new technologies
spawned by the computing revolution; new centers of education and research are being
created by those new technologies; the dominant forms of education and research in the
future will be those that fully embrace new technologies of the Digital Age.

9. Conclusions

The article discusses several ways in which new programming languages can be
improved by lessons learned from esoteric programming languages Ook! and BF. The
enduring popularity of those languages indicates that important new insights might be
discovered by analyzing them. This article has discussed several insights discovered upon
closer examination of those languages. It was found that the discovered insights were
applicable to the design of the ZedLX language. This article has also presented and
discussed the ways in which several lessons from Ook! and BF were applied to the ZedLX
language, one lesson per article section.

The discussion in this article also indicates that current systems of education and research
may be inadequate in the rapidly advancing technological conditions of the recent times.
The current systems appear to be systematically disregarding important kinds of research
and data, and also disregarding new methods of education. The essential malfunctions of
current systems may be a consequence of conformism and of many unavoidable human
biases, especial the status quo bias. The old systems will be unable to reform themselves
and will likely make an attempt to cling to power. The end result is likely to be a fusion of
old and novel systems, but only after the old systems are forced to radically reform
themselves.

References

1 Haupt, Michael. "Implementing Brainfuck in COLA." (2008). pp. 3.

2 Morr, Sebastian. "Esoteric Programming Languages." (2015). pp. 3.

Lessons to be learned from esoteric programming languages 8

3 Alan Jay Perlis. “Epigrams on programming.” In: ACM SIGPLAN Notices 17.9 (Nov.
1982), pp. 7–13.

4 Esolang. "Trivial brainfuck substitution." Retrieved February 20, 2024 from
https://esolangs.org/wiki/Trivial_brainfuck_substitution

5 Al-Qahtani, Sultan S., et al. "Comparing selected criteria of programming languages
java, php, c++, perl, haskell, aspectj, ruby, cobol, bash scripts and scheme revision 1.0-a
team cplgroup comp6411-s10 term report." arXiv preprint arXiv:1008.3434 (2010).

6 Dijkstra, Edsger W. "Letters to the editor: go to statement considered harmful."
Communications of the ACM 11.3 (1968): 147-148.

7 Broekhuis, Stijn. The importance of coding styles within industries. BS thesis. University
of Twente, 2021.

8 T. W. of Finity. "ZedLX - Statement Lists, part 3" (2018). Retrieved February 20, 2024
from https://zedlx.com/basics/statement-list-whitespace/part03

9 Porter, Leo, et al. "A multi-institutional study of peer instruction in introductory
computing." Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. 2016.

10 David Morgan-Mar. "Ook!" (2002). Retrieved February 20, 2024 from
https://www.dangermouse.net/esoteric/ook.html

11 Echeverri, Alejandra, et al. "Approaching human-animal relationships from multiple
angles: A synthetic perspective." Biological Conservation 224 (2018): 50-62.

12 Böhm, Corrado, and Giuseppe Jacopini. "Flow diagrams, turing machines and languages
with only two formation rules." Communications of the ACM 9.5 (1966): 366-371.

13 Rogozhin, Yurii. "Small universal Turing machines." Theoretical Computer Science
168.2 (1996): 215-240.

14 Laurent, Nicolas, and Kim Mens. "Taming context-sensitive languages with principled
stateful parsing." Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. 2016.

15 Parr, T., Fisher, K., “LL(*): the foundation of the ANTLR parser generator.” In
Proceedings of PLDI 2011, pp. 425-436, 2011.

16 Bendersky, Eli. (July 05, 2012). "How Clang handles the type / variable name ambiguity
of C/C++". Retrieved February 20, 2024 from
https://eli.thegreenplace.net/2012/07/05/how-clang-handles-the-type-variable-name-
ambiguity-of-cc/

17 Meyers, Scott. Effective modern C++: 42 specific ways to improve your use of C++ 11
and C++ 14. " O'Reilly Media, Inc.", 2014. pp.51.

18 Authors of Inside Edition. "Koko the Gorilla's Best Moments: From Sign Language to
Meeting Mister Rogers." (2018). Retrieved February 20, 2024 from
https://www.youtube.com/watch?v=G4QQ8Mfjb_g

Lessons to be learned from esoteric programming languages 9

19 T. W. of Finity. "ZedLX - The Type color, part 3" (2018). Retrieved February 20, 2024
from https://zedlx.com/basics/type-color/part03

20 Woods, Donald R., and James M. Lyon. "The INTERCAL Programming Language
Reference Manual." (1973). http://3e8.org/pub/intercal.pdf

21 Morr, Sebastian. "Esoteric Programming Languages." (2015). pp. 4.

22 Érdi, Gergő. "From Register Machines to Brainfuck, part 1." (6 September 2010).
Retrieved February 20, 2024 from https://erdi.dev/blog/2010-09-06-
from_register_machines_to_brainfuck,_part_1/

23 Jekovec, Matevz, and Andrej Brodnik. "Survey of the sequential and parallel models of
computation: Technical report LUSY-2012/02."

24 Bruni, Roberto, and Ugo Montanari. Models of computation. Springer International
Publishing, 2017.

25 Chmutina, Ksenia, Wesley Cheek, and Jason von Meding. "“Critique is not a verb”: is
peer review stifling the dialogue in disaster scholarship?." Disaster Prevention and
Management: An International Journal 31.4 (2022): 387-397.

26 Pinker, Steven. "Why academics stink at writing." The chronicle of higher education 61.5
(2014).

	Lessons to be learned from esoteric programming languages
	1. Introduction
	2. Being simple to explain
	3. Structure of computer programs
	4. Pronounceability of programming languages
	5. Turing-completeness of ZedLX
	6. Grammar-indicated syntax
	7. Redundancy reduction attempts
	8. Valid critique is priceless
	9. Conclusions

